Sitemap

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

Pages

Posts

Future Blog Post

less than 1 minute read

Published:

This post will show up by default. To disable scheduling of future posts, edit config.yml and set future: false.

Blog Post number 4

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 3

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 2

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 1

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

portfolio

RCPPO

Implementation of RCPO into stable-baselines3 PPO.

publications

Eyes Show the Way: Modelling Gaze Behaviour for Hallucination Detection

Published in Findings of Association for Computational Linguistics EMNLP, 2023

Detecting hallucinations in natural language processing (NLP) is a critical undertaking that demands a deep understanding of both the semantic and pragmatic aspects of languages. Cognitive approaches that leverage users’ behavioural signals, such as gaze, have demonstrated effectiveness in addressing NLP tasks with similar linguistic complexities. However, their potential in the context of hallucination detection remains largely unexplored. In this paper, we propose a novel cognitive approach for hallucination detection that leverages gaze signals from humans. We first collect an eye-tracking corpus consisting of 500 instances, annotated by 5 annotators for the task of hallucination detection. Our analysis reveals that humans selectively attend to relevant parts of the text based on distributional similarity, similar to the attention bias phenomenon in psychology. We identify two attention strategies employed by humans: global attention, which focuses on the most informative sentence, and local attention, which focuses on important words within a sentence. Leveraging these insights, we propose a novel cognitive framework for hallucination detection that incorporates these attention biases. Experimental evaluations on the FactCC dataset demonstrates the efficacy of our approach, obtaining a balanced accuracy of 87.1%. Our study highlights the potential of gaze-based approaches in addressing the task of hallucination detection and sheds light on the cognitive processes employed by humans in identifying inconsistencies.

Mental Disorder Classification via Temporal Representation of Text

Published in Findings of Association for Computational Linguistics EMNLP, 2024

Mental disorders pose a global challenge, aggravated by the shortage of qualified mental health professionals. Mental disorder prediction from social media posts by current LLMs is challenging due to the complexities of sequential text data and the limited context length of language models. Current language model-based approaches split a single data instance into multiple chunks to compensate for limited context size. The predictive model is then applied to each chunk individually, and the most voted output is selected as the final prediction. This results in the loss of inter-post dependencies and important time variant information, leading to poor performance. We propose a novel framework which first compresses the large sequence of chronologically ordered social media posts into a series of numbers. We then use this time variant representation for mental disorder classification. We demonstrate the generalization capabilities of our framework by outperforming the current SOTA in three different mental conditions: depression, self-harm, and anorexia, with an absolute improvement of 5% in the F1 score. We investigate the situation where current data instances fall within the context length of language models and present empirical results highlighting the importance of temporal properties of textual data. Furthermore, we utilize the proposed framework for a cross-domain study, exploring commonalities across disorders and the possibility of inter-domain data usage.

Harnessing Shared Relations via Multimodal Mixup Contrastive Learning for Multimodal Classification

Published in arXiv (Preprint) and NeurIPS Workshop on Unifying Representations in Neural Models (UniReps), 2024

Deep multimodal learning has shown remarkable success by leveraging contrastive learning to capture explicit one-to-one relations across modalities. However, real-world data often exhibits shared relations beyond simple pairwise associations. We propose M3CoL, a Multimodal Mixup Contrastive Learning approach to capture nuanced shared relations inherent in multimodal data. Our key contribution is a Mixup-based contrastive loss that learns robust representations by aligning mixed samples from one modality with their corresponding samples from other modalities thereby capturing shared relations between them. For multimodal classification tasks, we introduce a framework that integrates a fusion module with unimodal prediction modules for auxiliary supervision during training, complemented by our proposed Mixup-based contrastive loss. Through extensive experiments on diverse datasets (N24News, ROSMAP, BRCA, and Food-101), we demonstrate that M3CoL effectively captures shared multimodal relations and generalizes across domains. It outperforms state-of-the-art methods on N24News, ROSMAP, and BRCA, while achieving comparable performance on Food-101. Our work highlights the significance of learning shared relations for robust multimodal learning, opening up promising avenues for future research.

talks

teaching

Teaching experience 1

Undergraduate course, University 1, Department, 2014

This is a description of a teaching experience. You can use markdown like any other post.

Teaching experience 2

Workshop, University 1, Department, 2015

This is a description of a teaching experience. You can use markdown like any other post.